Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 153: 95-105, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37073799

RESUMO

White spot syndrome virus (WSSV), which causes white spot disease, is one of the notoriously feared infectious agents in the shrimp industry, inflicting estimated production losses world-wide of up to US$1 billion annually. Cost-effective accessible surveillance testing and targeted diagnosis are key to alerting shrimp industries and authorities worldwide early about WSSV carrier status in targeted shrimp populations. Here we present key validation pathway metrics for the Shrimp MultiPathTM (SMP) WSSV assay as part of the multi-pathogen detection platform. With superior throughput, fast turn-around time, and extremely low cost per test, the SMP WSSV assay achieves a high level of analytical sensitivity (~2.9 copies), perfect analytical specificity (~100%), and good intra- and inter-run repeatability (coefficient of variation <5%). The diagnostic metrics were estimated using Bayesian latent class analysis on data from 3 experimental shrimp populations from Latin America with distinct WSSV prevalence and yielded a diagnostic sensitivity of 95% and diagnostic specificity of 99% for SMP WSSV, which was higher than these parameters for the TaqMan quantitative PCR (qPCR) assays currently recommended by the World Organisation for Animal Health and the Commonwealth Scientific and Industrial Research Organisation. This paper additionally presents compelling data for the use of synthetic double-stranded DNA analyte spiked into pathogen-naïve shrimp tissue homogenate as a means to substitute clinical samples for assay validation pathways targeting rare pathogens. SMP WSSV shows analytical and diagnostic metrics comparable to qPCR-based assays and demonstrates fit-for-purpose performance for detection of WSSV in clinically diseased and apparently healthy animals.


Assuntos
Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Vírus da Síndrome da Mancha Branca 1/genética , Teorema de Bayes , Reação em Cadeia da Polimerase/veterinária
2.
Aust Vet J ; 101(4): 153-163, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36651680

RESUMO

Rotaviruses (RV) have a high prevalence in piggeries worldwide and are one of the major pathogens causing severe diarrhoea in young pigs. RV species A, B, and C have been linked to piglet diarrhoea in Australian pig herds, but their genetic diversity has not been studied in detail. Based on sequencing of the structural viral protein 7 (VP7) RVA G genotypes G3, G4 and G5, and RVC types G1, G3, G5, and G6 have been identified in Australian piggeries in previous studies. Although occurrence of RVB was reported in Australia in 1988, no further genetic analysis has been conducted. To improve health management decisions in Australian pig herds, more information on RV prevalence and genetic diversity is needed. Here, 243 enteric samples collected from 20 pig farms within Eastern Australia were analysed for the presence of RV in different age groups using a novel PCR-based multiplex assay (Pork MultiPath™ enteric panel). RVA, RVB, and RVC were detected in 10, 14, and 14 farms, respectively. Further sequencing of VP7 in selected RV-positive samples revealed G genotypes G2, G5, G9 (RVA), G6, G8, G14, G16, G20 (RVB), and G1, G3, G5, G6 (RVC) present. RVA was only detected in young (<10 weeks old) pigs whereas RVB and RVC were also detected in older animals (>11 weeks old). Interestingly, RVB and RVC G-type occurrence differed between age groups. In conclusion, this study provides new insights on the prevalence and diversity of different RV species in pig herds of Eastern Australia whilst demonstrating the ability of the Pork MultiPath™ technology to accurately differentiate between these RV species.


Assuntos
Infecções por Rotavirus , Rotavirus , Doenças dos Suínos , Animais , Suínos , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/veterinária , Doenças dos Suínos/epidemiologia , Austrália/epidemiologia , Diarreia/veterinária , Genótipo , Variação Genética , Filogenia
3.
Sci Rep ; 6: 33747, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671122

RESUMO

The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage-specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...